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Abstract

Purpose – The purpose of this paper is to investigate the bond behaviour between fiber reinforced
polymer (FRP) sheets and concrete elements, starting from available experimental evidences, through
a calibrated and upgraded 3D mathematical-numerical model.

Design/methodology/approach – The complex mechanism of debonding/peeling failure of FRP
reinforcement is studied within the context of damage mechanics to appropriately catch transversal
effects and developing a more realistic and comprehensive study of the delamination process. The FE
ABAQUSq code has been supplemented with a numerical procedure accounting for Mazars’s damage
law inside the contact algorithm.

Findings – It has been shown that such an approach is able to catch the delamination evolution
during loading processes as well.

Originality/value – A Drucker-Prager constitutive law is adopted for concrete whereas FRP elements
are assumed to behave in a linear-elastic manner, possibly undertaking large strains/displacements.
Surface-to-surface contact conditions have been applied between FRP and adjacent concrete, including the
enhancement given by the strain-softening law according to Mazars’ damage model. The procedure has
been introduced to describe the coupled behaviour between concrete, FRP and adhesive resulting in
specific bonding-debonding features under different load levels.
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Nomenclature
A ¼ Mazars’ material parameter
B ¼ Mazars’ material parameter
D ¼ damage variable
Dnþ1 ¼ damage variable at step (n þ 1)
d ¼ cohesion
1f ¼ strain in FRP
1c ¼ strain in concrete
e ¼ strain vector
e i ¼ strain vector along i direction
enþ1

i ¼ strain vector along i direction at
step (n þ 1)

Ef ¼ FRP elastic modulus
Eii ¼ elastic coefficient along ii direction
E0 ¼ elastic modulus for virgin material

F ¼ failure surface
g ¼ gap function
gN ¼ gap function in normal direction
gTk ¼ gap function in tangential direction

k (k ¼ 2, 3)
g0i ¼ initial gap function along i direction

(i ¼ 1, 2, 3)
I ¼ identity matrix
lf ¼ FRP sheet length
K0 ¼ initial value of the softening

parameter in Mazars’ law
k ¼ material parameter for

Drucker-Prager model
kf ¼ FRP stiffness
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n ¼ normal vector
nf ¼ numbers of FRP layers
n j ¼ normal vector at point j
Pu,exp ¼ experimental ultimate limit load
Pu,num ¼ numerical ultimate limit load
p ¼ hydrostatic stress
q ¼ von Mises equivalent stress
r ¼ third invariant of deviatoric

stress
t ¼ stress vector
t i

j ¼ stress vector at point j along i
direction

tnþ1
i ¼ stress vector along i direction at

step (n þ 1)
�t1 ¼ stress vector at point �x1

t2 ¼ stress vector at point x2

tf ¼ FRP thickness
S ¼ deviator stress tensor
s ¼ slip
�s ¼ deviator stress measure
x i ¼ position vector at node i

zi ¼ position of strain gauge i
Greek letters
b ¼ friction angle
1 ¼ strain tensor
10 ¼ limit linear elastic strain
~1 ¼ maximum strain value
1s

i ¼ deformation in correspondence of
strain gauge i

Dgi ¼ gap function variation along i
direction

Dgnþ1
i ¼ gap function variation along i

direction at step (n þ 1)
Gi ¼ external surface of body i
Gc ¼ contact surface/contact zone
Vi ¼ body i
s ¼ stress tensor
~s ¼ effective stress tensor
s ¼ average stress for 1D problem
sf ¼ axial stress on the FRP sheet
t ¼ shear stress along delamination

direction

1. Introduction
The last two decades have seen a significant interest in the use of fiber reinforced
polymers (FRPs) for civil engineering structures including bridges, buildings, parking
garages and residential constructions. On one side, their use has been driven by the
desire to find non-corroding reinforcing materials alternative to steel and, on the other,
for the purposes of developing cost effective and durable structural strengthening and
rehabilitation solutions. FRPs are applied both in internal applications like ordinary
steel bars in concrete and for external applications in the form of wraps, laminates or
sprays applied for repair and strengthening of steel, concrete and timber structures. In
the case of repair and strengthening, in spite of the ever-increasing use of FRPs in civil
construction, the bond developed between FRP and the substrate material remains not
fully cleared. Very little is understood of the mechanisms that allows bonding to be
developed, particularly long-term and cyclic bond behaviour.

Externally bonded FRP sheets are currently used to repair and strengthen existing
reinforced concrete (RC) structures for shear (Pellegrino and Modena, 2002, 2006, 2008)
and flexural (Pellegrino and Modena, 2009a; Valluzzi et al., 2009) applications: an
important issue is proper design against various debonding failure modes (Pellegrino
et al., 2008; Lu et al., 2005; Taljsten, 1997; Bizindavyi and Neale, 1999; Chen and Teng,
2001; Nakaba et al., 2001), including cover separation, plate end interfacial debonding
(mode 1), intermediate flexural crack-induced interfacial debonding (mode 2), and
critical diagonal crack-induced interfacial debonding (mode 3) defined in (Consiglio
Nazionale delle Ricerche (CNR), 2004). Therefore, the behaviour of the interface between
FRP and concrete support is one of the main elements controlling debonding failures in
RC structures strengthened with FRP sheets/plates. The most common failure modes are
shown in Figure 1, i.e. the intermediate flexural crack-induced interfacial debonding
(mode 2), the case studied in this work, in flexural strengthening applications. The tests
shown in Figure 1 have been developed at the University of Padua, Italy.
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Additionally, delamination between FRP and concrete in the anchorage zone causes
very brittle fracture mechanisms. This phenomenon depends on many factors, e.g. load
level, concrete characteristics, rigidity of adhesive and FRP plate.

Therefore, even if many experimental and analytical studies have been undertaken to
understand the bond behaviour between FRP and substrate, its current comprehension
is generally limited to semi-empirical two-dimensional approaches (Leung et al., 2006a;
Savoia et al., 2003; Pellegrino and Modena, 2009b). In Ferracuti et al. (2006) and Ferretti
and Savoia (2003), a non-linear two-dimensional behaviour is attributed to the interface
and the solution is reached via a finite differences scheme; in Point and Sacco (1996),
Bruno and Greco (2001), Bruno et al. (2003, 2006, 2007) and Greco et al. (2007) the
two-dimensional interface model is based on fracture and contact mechanics and on the
evaluation of the energy release rate. A non-linear softening phenomenological curve is
used in Leung et al. (2006b) and Rabinovitch and Frostig (2001) whereas in Hormann et al.
(2002) fracture energies are used as control parameters but the adhesive layer is not
taken into account.

First examples of 3D modelling of bond behaviour can be found in Kishi et al. (2005),
where a smeared-crack approach is followed and the relation between bonding stress
and relative displacements has been defined according to the European Committee for
Concrete-International Federation for Prestressing model code, and in Riccio and
Pietropaoli (2008) where delamination buckling and growth have been analyzed on
composite plates. The first demonstration that the stress distribution is significantly
different from plane stress assumption can be found in Chen and Pan (2006).

The present work proposes to investigate the bond behaviour between FRP sheets
(of various types and amounts) and concrete elements, starting from already available
experimental evidences to appropriately calibrate the mathematical-numerical model
chosen for the simulation of the above phenomena, within a three-dimensional domain
(Chen and Pan, 2006). In this way, transversal effects can be caught and allow for a
more realistic and comprehensive study of the delamination process.

Particularly, it is here proposed to study the complex mechanism of
debonding/peeling failure of FRP reinforcements within the context of damage

Figure 1.
Failure modes involving

delamination at
concrete-FRP interface

Mode 1 Mode 2

Cracked
area

Mode 3

3D modelling of
bond behaviour
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mechanics, appropriately enhancing the potentialities of the finite element (FE) code
ABAQUSq, which allows for developing geometric non-linear and changing-status
analyses, by supplementing it with a numerical procedure accounting for Mazars’s
damage law inside the contact algorithm. It will be shown that such an approach is
able to catch delamination and its evolution during the loading process by means of the
comparison between numerical and experimental results developed at the University
of Padua, Italy (Pellegrino et al., 2008).

2. Numerical modelling of delamination processes
The loss of adhesion between FRP and concrete may concern both laminates or sheets
applied to RC beams as flexural and/or shear strengthening. Cracks in such
strengthened structures may occur within concrete, between concrete and adhesive,
adhesive and FRP, within adhesive or FRP.

A realistic numerical modelling of debonding within a FE context requires to
implement damage laws in the contact conditions, being the contact algorithm alone not
sufficient to catch the triggering of delamination and its evolution. Indeed, the contact
method is characterized by the conditions of contact or no-contact but the behaviour in
the transition state is generally treated with a Coulomb friction procedure, hence
getting a softening response is not possible. Again, the necessity of developing an
upgraded contact procedure to model bonding-debonding processes is supported by
experimental evidences, as reported in the following.

When a proper installation is adopted, as the adhesive strength is typically much
higher than the concrete tensile strength, debonding always takes place within
concrete itself with the removal of a thin layer of material (CNR, 2004). Hence, concrete
cracking usually occurs in the superficial zone close to the interface only: this cracking
due to debonding has been taken into account in the numerical model by means of the
contact-damage model at the interface.

2.1 Contact conditions
The interaction between concrete and FRP plates can be described through contact
algorithms. In a FE analysis contact conditions are a special class of discontinuous
constraints allowing forces to be transmitted from one part of the model to
another. The constraint is discontinuous because it is applied only when the two
surfaces are in contact. When the two surfaces are separated, the constraint is not
applied.

If bodies V
1 and V2 are in contact, there are two surfaces G1 in body V1 and G2 in

body V2 in contact, and the contact zone GC ¼ G1 > G2 is defined (Figure 2).
Numerically, contact surfaces are created from the element faces. In this study, the

body V1 is the FRP sheet where the contact surface G1 is defined as the master surface
and concrete (body V2) is defined as G2, the slave surface.

In the contact zone Gc the non-penetration condition must hold:

ðx2 2 �x1Þ ·n1 $ 0 onGc ð1Þ

where �x1 is a point of V1 with minimum distance from x2.
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The gap functions are defined by Belytschko et al. (2001) and Wriggers (2006):

gN ¼ ðx2 2 �x1Þ ·n1

gTk ¼ ðx2 2 �x1Þ ·nk

ð2Þ

where gN is the gap in normal direction and gTi are the tangential gaps in k direction, k ¼ 2, 3.
The equilibrium condition on Gc is written through the action-reaction condition:

t2 2 �t1 ¼ 0 onGc ð3Þ

where t j is the stress vector at the point j. If we consider the Cauchy stress tensor s, the
vector t j is given by:

tj ¼ snj ð4Þ

We can define three components of the stress vector t ¼ (t1, t2, t3) according to the local
orthonormal reference system (n1, n2, n3), see Figure 3:

kt1k ¼ ktNk ¼ t ·n1 ) t1 ¼ kt1kn1

tT ¼ t2 tN ¼ ðt2; t3Þ; t2 ¼ ðtT ·n2Þn2; t3 ¼ ðtT ·n3Þn3

ð5Þ

The strain vector e ¼ (e1, e2, e3) is defined by:

e ¼ 1n

e1 ¼ ðe ·n1Þn1; e2 ¼ ½ðe2 e1Þ ·n2�n2; e3 ¼ ½ðe2 e1Þ ·n3�n3

ð6Þ

where 1 is the strain tensor.

Figure 2.
Contact condition
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In the contact approach the strain vector ei can be found by means of increments in
relative positions between the two surfaces keik ¼ Dgi/g0i where g0i is the gap function
when the analysis starts. A similar approach can be found in Bruno and Greco (2001).

A first assumption allows for relating stress and strain by means of a diagonal
matrix (Wriggers, 2006) in a principal reference system:

t1

t2

t3

2
664

3
775 ¼

E11 0 0

0 E22 0

0 0 E33

2
664

3
775 ·

e1

e2

e3

2
664

3
775 ð7Þ

where Eii are the constitutive coefficients, Eii ¼ Eii(D), where D is the damage
variable.

In the below list the procedure for the numerical implementation of the delamination
process is described:

Numerical delamination process
CONTACT CLOSED
STEP n þ 1:
1) Calculate

- increments in relative position between the two surfaces Dgnþ1
i for all directions

- total deformations enþ1
i

2) Damage check:
IF jenþ1

i j < ~1 THEN

Dnþ1 ¼ Dn

ELSE
~1 ¼ jenþ1

i j
Dnþ1 ¼ see equation (9)

END IF
IF Dnþ1 $ 0.9999 THEN

CONTACT OPEN
end

END IF

Figure 3.
Stress vector
decomposition
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3) Evaluate elastic coefficients Enþ1
ii ¼ E0ð1 2 Dnþ1Þ where E0 is the elastic modulus

of virgin material.
4) Stress vector:

tnþ1
1

tnþ1
2

tnþ1
3

2
664

3
775 ¼

Enþ1
11 0 0

0 Enþ1
22 0

0 0 Enþ1
33

2
6664

3
7775 ·

enþ1
1

enþ1
2

enþ1
3

2
664

3
775

end

2.2 Mazars’ damage law
The Mazars’ damage law is usually adopted to evaluate concrete damage. From
experimental evidences (Figure 4) the delamination process occurs in the first layer of
concrete adjacent to FRP/adhesive. For this reason Mazars’ damage model can be
applied for studying the debonding effect between FRP and concrete.

An isotropic damage law is here considered and briefly recalled in the following: the
effective stress is defined as:

~s ¼
s

1 2 D
ð8Þ

Figure 4.
Typical delamination

occurring in a shear test

3D modelling of
bond behaviour
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for a 1D problem; when D ¼ 0 the material is virgin whereas, when 0 < D <1 the
material is affected by damage, up to D¼1 corresponding to full damage, i.e. fracture.

The evolution of damage D ¼ Dð ~1Þ according to Mazars depends on the strain level
and it is given by:

Dnþ1 ¼

0 if ~1 # 10

1 2 ð12AÞK0

~1
2 A

expðBð ~12k0 ÞÞ
if ~1 > 10

8<
: ð9Þ

The reader is referred to Mazars and Pijaudier-Cabot (1989) and Majorana et al. (1998)
for additional details.

Damage is an irreversible process and the variable D cannot decrease. In the numerical
procedure the damage variable D is defined in the incremental form given by equation (9)
and the not-decreasing condition can be seen in “Numerical delamination process” list
where the damage variable D is upgraded only if the strain component enþ1 at step (n þ 1)
is larger than ~1. In this case ~1 ¼ jenþ1k and Dnþ1 is upgraded with equation (9).

The proposed three-dimensional model is schematically shown in Figure 5 for sake of
clarity. In that scheme the elastic-damage behaviour is defined in the contact zone only
(with no directional restrictions) where delamination will occur. The FRP is assumed to
behave as a linear elastic material, in agreement with the results of experimental tests,
whereas a Drucker-Prager model is used to characterize the constitutive behaviour of
concrete, as reported below.

The contact-damage model has been implemented using a fortran routine and
linked to ABAQUS (“Numerical delamination process”); the subroutine determines the
3D damage at each step and allows for the occurrence of sliding between the contact
elements if D is different from zero.

Figure 5.
Schematic of the model
and analogical scheme,
active along each direction

Concrete

Elasto-plastic

Elasto-damage

Elastic model

Mazars' model

Drucker-Prager's model

Contact zone

FRP +adhesive
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2.3 Concrete constitutive law
A Drucker-Prager constitutive law has been assumed to model the non-linear
behaviour of concrete in compression and in tension, that is computationally efficient.
A sensitivity analysis has been additionally performed to check the behaviour of the
contact-damage model in the interface zone, as reported in the following.

The failure surface in the (t, p) plane is described by:

F ¼ �s2 p · tanðbÞ2 d ¼ 0 ð10Þ

whereb is the friction angle and d the cohesion. The hydrostatic stress p is determined by:

p ¼
1

3
trðsÞ ð11Þ

�s is the deviator stress measure, defined by:

�s ¼
q

2
1 þ

1

k
2 1 2

1

k

� �
·

r

q

� �2
" #

ð12Þ

where q is the von Mises equivalent stress q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2S : S

p
, S the deviator stress tensor

S ¼ s2 qI, r the third invariant of the deviator stress r ¼ 9=2SS : S, and k is a material
parameter (given by the ratio between the flow stress in triaxial tension and the flow stress
in triaxial compression), variable between 0.778 and 1.0.

3. Available experimental data and numerical analyses
The experimental results used to calibrate the numerical model and check its
effectiveness have already been published in Pellegrino et al. (2008) and are briefly
recalled here for reasons of clarity.

The setup of the double shear test (Figure 6) consisted of two concrete prisms
100 £ 100 £ 300 mm3 at a distance of 20 mm one to the other, connected by two carbon
FPR strips 50 mm wide and 200 mm long; the load value was measured through a
load-transducer connected to the same system used to register strain gauge values, at a
loading rate of about 150 N/sec. Effective bond length, maximum bond/shear stress

Figure 6.
Double shear test setup
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Concrete

FRP

FRP
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and slip values were experimentally measured and used in Pellegrino et al. (2008), Lu
et al. (2005), Taljsten (1997), Bizindavyi and Neale (1999) and Chen and Teng (2001) to
propose new empirical formulas for such parameters, taking into account the influence
of FRP stiffness (shear stress refers to the shear component along the longitudinal
direction of the specimen). Failure modes were observed and curved fracture lines were
detected in a number of specimens; hence the FRP deformation was found to be not
constant along the width of the FRP sheet, showing a maximum in the middle of the
bonded zone and a minimum at the edges of the FRP strip, as also shown in Figure 17.

This test is representative of post-cracked concrete beams, the ultimate state for the
strength of the structure when the FRP fiber only resists to loads. The modelled
situation is shown in Figure 7, where the two prisms of concrete are connected by the
FRP strip; hence the strip is subjected to traction alone, whereas bending effects are
negligible. Hence, such a schematization where the concrete beam is cracked and only
the FRP sheet prevents the structure to collapse is reproduced. In fact the scope of the
analysis is not to define the triggering and evolution of cracks in concrete (because it is
considered that it has already cracked) but to evaluate the ultimate limit load of the
structure before complete delamination.

These observations supported the need of developing an appropriate
three-dimensional numerical modelling for a better understanding and simulation of
the bond behaviour between FRP and concrete. A similar approach has already been
followed by Bruno et al. (2007) through a smeared-crack model, but the aim was to
catch the load-carrying capacity and failure behaviour of RC beams reinforced in
flexure with a FRP sheet. In this case, the damaging of the support can represent an
important parameter which influences the debonding behaviour and, consequently, the
load carrying capacity of the strengthened element and the modelling of the support
plays an important role.

The typical double shear test has been reproduced through a 3D model (Figure 8);
one-eighth only is represented due to symmetry, characterized by four-noded tetrahedral
isoparametric bricks (for the concrete prism) and three-noded triangular isoparametric

Figure 7.
Test model

Concrete
crack
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Figure 8.
Adopted discretization

and symmetry conditions

3D modelling of
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plate elements (for the FRP sheet); as stated before, a Drucker-Prager constitutive law is
adopted for concrete whereas FRP elements are assumed to behave in a linear-elastic
manner, possibly undertaking large strains/displacements. Surface-to-surface contact
conditions have been applied between FRP and adjacent concrete including the
enhancement given by the strain-softening law according to Mazars’ damage model.
The procedure has been introduced to describe the coupled behaviour between
concrete, FRP and adhesive resulting in specific bonding-debonding features under
different load levels.

The undertaken analyses included large deflections and strongly non-linear material
effects. A Newton-Raphson iterative solution algorithm with force convergence criterion
was used. For each load step an average of ten substeps were applied for reaching
equilibrium. On completion of an equilibrium iteration the stiffness matrix was updated
for changes in geometry, stress stiffening effects and out-of-balance forces. The total
number of run steps was 260, with a minimum load increment of 0.001 per cent and a
maximum of 22 per cent of the total load.

The calibration of the Mazars’ model has been first developed in agreement with the
experimental values of the ultimate loads Pu obtained by previous tests dealing with
the same investigation (Pellegrino and Modena, 2002). These specimens have the same
geometry but FRP stiffness has been varied by superimposing various FRP layers and
by assuming different elastic moduli (Table I). So the Mazars’ parameters reported in
Table II come directly from such calibration analyses.

Particularly, in Table I nf is the number of FRP layers, tf the thickness of one FRP
sheet and kf the FRP stiffness evaluated from the expression kf ¼ nftfEf;

The adopted material data are listed in Table II.
It is here briefly recalled that the delamination process is characterized by three states

under continuous increase in the applied load level: in the first (state 1), cracks start in the

nf tf (mm) Ef (MPa) kf (kN/m) Pu,exp (kN) Pu,num (kN)

1 0.165 390,000 6,435 17.8 17.7
2 0.165 230,000 75,900 21.8 21.0
3 0.165 230,000 113,850 26.4 25.7

Table I.
Experimental and
numerical ultimate loads
for calibration analysis

Concrete FRP Contact zone

Elastic modulus (MPa) 47,700.0 230,000.0 3,034.0
Poisson’s coefficient 0.2 0.3 0.3
Width (mm) 100.0 50.0 –
Height (mm) 100.0 – –
Length (mm) 600.0 400.0 –
Thickness (mm) – 0.495 1.1
fc (MPa) 58.0 – –
A (Mazars’ parameter) – – 1.0
B (Mazars’ parameter) – – 55.0
K0 (Mazars’ parameter) – – 0.0012

Table II.
Material data
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FRP zone subjected to maximum shear: an increase in traction on the fibers induces an
increase in shear stress at the concrete-FRP interface until the stress peak is reached and
a micro-debonding occurs; in the second state (state 2) the interface is subjected to both
an increase in stress and softening (where a peak has already been reached), so that the
stress peak moves from the cracks’ triggering point towards the FRP’s unloaded part
causing a micro-debonding propagation. Under certain load levels, the slip reaches its
maximum value and stresses fall to zero, giving rise to the process of macro-debonding.
The third state (state 3) refers to complete debonding and the phenomenon eventually
propagates in an unstable manner: the final debonding depends on the cracking scheme
characterizing the substrate.

As evidenced by Figure 9, up to 40 per cent of the maximum applied load (26 kN),
stresses increase nearly linearly (this behaviour can be associated to state 1), then the
shear stress peak moves towards the internal part of the FRP and the zone subjected to
maximum stress enlarges up to a limit value (state 2) corresponding to 50 per cent of
the load. Under further increase in the load level the debonding (state 3) starts and the
bond length decreases until the complete detachment between concrete and FRP occurs.
The movement of the dark band towards the end of the specimen shows the evolution of
the delamination process until complete debonding.

The stress distribution across the FRP plate follows a parabolic-type shape, in
agreement with what obtained in the experimental tests (Pellegrino et al., 2008).
The stress-strain relationship at the interface (Figure 10, referring to, e.g. the middle
point of Figure 18) is typically an elastic-softening one, in agreement with the
implemented damage law for the contact algorithm. The descending branch is modified
by the A and B parameters provided by Mazars’ law.

In the following, the main numerical results are compared with available
experimental evidences and they refer to points located in the middle of the FRP sheet;
numerical shear stresses (Figure 11; the origin of the abscissa refers to the top of the
concrete sample, i.e. the separation zone of Figure 7) decrease more rapidly along the

Figure 9.
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fiber plate than the experimental ones but both the bonding length (the length along
which the bond stress is not zero), the curves’ shapes and the peaks are respected.

The ultimate load (100 per cent) corresponds to the situation closest to complete
debonding/delamination of FRP from the concrete support (i.e. shear stress equal to
zero in the whole bonding zone); clearly, the load reduces to zero when the plate is

Figure 10.
Numerical stress-strain
curve at the contact zone
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completely debonded. When 95 per cent of the ultimate load is reached, the strip is
delaminated for a part of its length but still active for the remaining part (Figure 11) to
which the effective bond length refers. A further small increase of the applied
load (from 95 to 100 per cent) is necessary to approach the complete delamination.
The comparison with the experimental test is hence developed when the applied load is
95 per cent of the ultimate load since, in this case, a part of the strip is still active.

A linear elastic behaviour is assumed for the FRP only for the calculation of bond
stresses starting from measured strains, as explained below.

Numerical strains (Figure 12) are very close to the experimental values under load
levels ranging from 40 per cent (delamination has not started yet) to 68 per cent when
debonding is developing. Under the load level close to the ultimate one, the analyses
showed deformations stabilized around 0.003 against a maximum experimental peak
of 0.004: such a difference (reported also, e.g. by Lu et al. (2005)) is simply due to
transversal movements of the nearly detached fiber, inducing possible errors
(specifically, an overestimation) in the collected experimental values.

The experimental values of bond/shear stress t are calculated by a simple equilibrium
equation of a segment of FRP sheet subjected to axial stresses sf and sf þ dsf and to
shear stresses t(z) along the length dz of the segment (Pellegrino et al., 2008). Considering
discrete distribution of the strain gauges, which are the only locations at which
deformation is known, the equation may be written in a discrete manner:

tðziÞ ¼
1

2
nf tf Ef

1si 2 1si21

zi 2 zi21
þ

1siþ1 2 1si
ziþ1 2 zi

� �
ð13Þ

where 1si indicates deformation at generic strain gauge i, and zi its position.
The slip shown in Figure 13 was calculated in agreement with Pellegrino et al.

(2008), starting by assuming:
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ds

dz
¼ 1f 2 1c ø 1f ð14Þ

where concrete deformation 1c may be neglected with respect to FRP deformation 1f.
Therefore:

sðzÞ ¼ sð0Þ þ

Z z

0

1fð�zÞd�z ð15Þ

Considering a discrete distribution of strain gauges, the previous equation may
rewritten in a discrete manner:

sðziÞ ¼ sðlfÞ þ
Xi

j¼n

1

2
ð1j21 þ 1jÞðzj21 2 zjÞ ð16Þ

where lf is the total length of the FRP, s(lf) the slip at the end of the strip and n the total
number of strain-gauges. Similarly to what evidenced before, a good agreement is
reached up to 68 per cent of the maximum applied load, whereas a shift occurs for
higher load levels.

In Figure 14, the comparison between numerical and experimental curves is shown.
The method of measuring axial strains by means of closely spaced strain gauges
(Lu et al., 2005) cannot produce accurate local bond-slip curves because such strains
show violent variations as a result of the discrete nature and the heterogeneity of
concrete and the roughness of the underside of the debonded FRP sheet.

Figure 14 is constructed considering, under a given percentage of load level, the shear
stress vs slip curve, by taking at any position of the strain gauges (in the experimental
test), the value of shear stress and the corresponding slip. In a similar way, we can define
shear stress-slip curves considering, now at a fixed point, the load level variation

Figure 13.
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(Figure 15): it is here shown that the global shear stress vs slip behaviour at a certain
location is practically the same, but clearly under different load levels.

The shear stress-slip diagram (Figure 15) gives information on the fracture energy,
being (CNR, 2004; Savoia et al., 2003; Pellegrino and Modena, 2009b):

G ¼

Z 1

0

tðsÞds ð17Þ
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Considering a discrete interval of data, the fracture energy takes the form:

Gmax ¼
Xn
i¼1

tiþ1 þ ti

2
· ðsiþ1 2 siÞ

� �
ð18Þ

Equations (17) and (18) correspond to the area under the curve of Figure 15.
The variation of energy while the load grows at a fixed position is shown in Figure 16.
The maximum value corresponds to the fracture energy defined by equation (18).
When G/Gmax ¼ 1 delamination occurs at that point.

As already discussed, such a 3D numerical model was additionally able to catch
transversal effects during debonding, in agreement with the experimental results
(Figure 17); particularly, the distribution of maximum strain at the interface (i.e. on the
FRP-concrete contact surface) follows the crack patterns revealed after rupture of
the sample. By taking two reference control points (Figure 18), one in the middle and
the other on the edge of the FRP strip, it is possible to evidence (Figure 19) that, under a
fixed load level, the deformation at the middle position is higher than at the edge up to
sample’s collapse; again, during the loading process, the strain curves start diverging
until a nearly instantaneous intersection, taking place at end analysis when the FRP
has completely debonded.

This means that when using a 2D plane stress state approach, which necessarily
assumes a constant stress distribution along the FRP width (not in agreement with
experimental evidences), the stress resultants are overestimated; as already evidenced,
the maximum stress difference between a middle and an edge point on the FRP is of
about 12.5 per cent, hence requiring an adjustment in the FRP’s dimension assumed
when performing 2D analyses. An equivalent FRP width could be obtained simply
through equilibrium conditions for the shear stress resultants (Figure 20):
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Z B

0

tds ¼ tmax ·B0 ð19Þ

B0 ¼
1

tmax

Z B

0

tds ð20Þ

The reduction of the width is estimated, B0/B ¼ 7 per cent.
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The equivalence is clearly valid in considering the peak values only. The integration
(in the considered section) has been done when maximum shear stress occurs, so
softening has not started yet; hence we are in the elastic limit state and the results are
not affected by non-linearities.
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4. Mesh sensitivity analysis
To confirm the independence of the numerical results on the mesh at the interface
(where the contact-damage model is activated), three discretizations have been
characterized as follows (Figure 21):

(1) 4,734 nodes, 20,744 tetrahedral elements and 420 triangular elements.

(2) 7,568 nodes, 5,500 hexahedral elements and 600 quadrilateral elements.

(3) 21,072 nodes, 22,975 hexahedral elements and 1,500 quadrilateral elements.

All the models refer to the same initial/boundary conditions and materials and the
comparison has been performed by considering the shear stress distribution in each
situation.

The contour maps of Figure 22 shows the shear stress under 50 per cent of the
maximum applied load for all discretizations, evidencing the same stress values and
2D distribution. The independence of results on the adopted discretization is confirmed
by Figure 23, where the curves of shear stress vs distance (along the FRP strip, in the
middle) are reported; just a slight difference in the position of the stress peak for mesh
(b) is evidenced, which does not affect the global interfacial behaviour. In Table III,
ultimate limit loads are reported for the three models (a), (b) and (c), to further
demonstrate the substantial mesh independence on the ultimate load.

5. Conclusions
The bond behaviour between FRP sheets and concrete elements has been here
investigated, starting from already available experimental evidences, through a
calibrated and upgraded 3D mathematical-numerical model. The system has been
viewed as composed by three different physical layers: the concrete base, the adhesive
layer and the strengthening bonded FRP strip. The adhesion between layers has been
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Figure 22.
Contour maps for shear
stress under 50 per cent of
the maximum load for
models (a), (b) and (c)
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modelled by means of an interface model whose elastic-damage constitutive law relates
interlaminar stresses acting in the sliding direction. The FE ABAQUSq code has been
supplemented with a numerical procedure accounting for Mazars’s damage law
inside the contact algorithm. Comparing the numerical results with those of a wide
experimental investigation developed at the University of Padua, Italy, in terms of
bond stress vs position, axial strain vs position, slip vs position and bond stress vs slip
diagrams, it has been shown that such an approach is able to catch delamination from
a three-dimensional point of view and its evolution during the entire loading process.

It has been evidenced by such 3D model that FRP deformation is not constant along
the transverse axis but has a maximum in the middle of the bonded zone and a
minimum at the edges of the FRP strips, confirming experimental evidences and hence
demonstrating the suitability of the approach to capture the mechanism of
debonding/peeling failure of FRP reinforcements and to catch transversal effects for
developing a more realistic and comprehensive study of the delamination process.

The work of the shear tractions acting at the interface through the crack face
displacements has been additionally calculated starting from a FD procedure and
evaluated under a specified load level.

The practical implications of this study are related to the problem of bond between
FRP and concrete, which is the basic phenomenon governing the efficiency of the
strengthening technique. Further research will be devoted to 3D numerical simulation
of FRP strengthened structural elements (beams and columns) in which
debonding/delamination is often the controlling failure mode.
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